Sharp two-parameter bounds for the identric mean

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Bounds for the Identric Mean of Two Arguments

Given two positive real numbers x and y, let A(x, y), G(x, y), and I(x, y) denote their arithmetic mean, geometric mean, and identric mean, respectively. Also, let Kp(x, y) = p √ 2 3A p(x, y) + 13G p(x, y) for p > 0. In this note we prove that Kp(x, y) < I(x, y) for all positive real numbers x 6= y if and only if p ≤ 6/5, and that I(x, y) < Kp(x, y) for all positive real numbers x 6= y if and o...

متن کامل

Sharp Two Parameter Bounds for the Logarithmic Mean and the Arithmetic–geometric Mean of Gauss

For fixed s 1 and t1,t2 ∈ (0,1/2) we prove that the inequalities G(t1a + (1− t1)b,t1b+(1− t1)a)A1−s(a,b) > AG(a,b) and G(t2a+(1− t2)b,t2b+(1− t2)a)A1−s(a,b) > L(a,b) hold for all a,b > 0 with a = b if and only if t1 1/2− √ 2s/(4s) and t2 1/2− √ 6s/(6s) . Here G(a,b) , L(a,b) , A(a,b) and AG(a,b) are the geometric, logarithmic, arithmetic and arithmetic-geometric means of a and b , respectively....

متن کامل

Sharp Generalized Seiffert Mean Bounds for Toader Mean

and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean

and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2018

ISSN: 1029-242X

DOI: 10.1186/s13660-018-1917-2